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RESPONSE ENVELOPE - A GLOBAL DESCRIPTION OF THREE-AXIS 

LARGE-ANGLE SPACECRAFT ATTITUDE CONTROL SYSTEMS 

By George Meyer 

Ames Research Center 

SUMMARY 

Arbitrary three-axis, large-angle attitude control systems of highly 
maneuverable spacecraft capable of tracking time-varying target attitudes are 
considered. Such systems are inherently multivariable, multidimensional, non- 
linear, and nonautonomous with infinite sets of forcing functions and initial 
conditions. It provides an 
analytical procedure for judging whether a proposed attitude control system of 
this type is fast enough for the mission of the spacecraft. 
a scalar function of time which at each instant is the maximum possible three- 
dimensional attitude error between spacecraft and target for any admissible 
initial condition, time variation of target attitude, and disturbance. A sim- 
ple procedure is presented for computing the response envelope approximately. 
The approximation is conservative and may be used as a basis for accepting a 
proposed system. The procedure is based on the Liapunov theory and a proto- 
type of general attitude control systems. The proposed procedure is 
illustrated by a numerical example based on an Orbiting Astronomical 
Observatory. 

The concept of a response envelope is introduced. 

It is defined as 

INTRODUCTION 

Systems for controlling spacecraft attitude vary greatly in their inter- 
nal structure. Thus, for example, torque may be generated by reaction wheels, 
control moment gyros, reaction jets, or by some interaction with the environ- 
ment (i.e., gravity gradient, solar pressure, magnetic field, etc.). Simi- 
larly, spacecraft attitude may be measured with star trackers, sun sensors, 
inertial gyros, or by using the earth's magnetic field. Spacecraft angular 
velocity may be measured directly, or it may be computed from attitude data. 
Finally, the feedback linking the outputs of attitude and angular velocity 
sensors with the inputs to the torquers may be designed using Euler angles, 
some property of sensors (see refs. 1 and 2) ,  or Euler's theorem on three- 
dimensional rotations (see refs. 3 and 4 ) .  The design may be optimal in some 
sense, or it may simply be intuitively appealing. However, despite this 
diversity, every attitude control system is built for the single purpose of 
allowing the spacecraft to fulfill its mission. Consequently, there is always 
a stage in the design of such systems at which one must judge the quality of 
the proposed system relative to the mission of the spacecraft. Since all pos- 
sible situations must be considered, quality must be judged on the basis of 
the overall (global) properties of the system. This poses no difficulty if 
the mission of the spacecraft presents its control system with only a small 



number of situations to control because then global behavior may be obtained 
by directly testing the system or its analytical model. If, however, the num- 
ber of situations to control is so large that direct enumeration is impracti- 
cal, or, indeed, impossible, tests consisting of a small sample may not be 
decisive: there is no certainty that every case which results in mission 
failure is included in the test sample. 

The present note is concerned with the responsiveness of three-axis, 
large-angle attitude control systems of highly maneuverable spacecraft capable 
of tracking time-varying target attitudes. A system of this type is inher- 
ently multivariable, multidimensional, nonlinear, and nonautonomous with infi- 
nite sets of forcing functions and initial conditions. Since, on the one hand, 
there are infinitely many cases involved, and, on the other hand, there are no 
typical cases (because of nonlinearity) from which to extrapolate to any other 
case, the responsiveness of such systems cannot be determined by direct enu- 
meration of cases. Another method must be found. 
report is to present such a method. 

The purpose of the present . 

The method involves two ideas, namely, the error angle first introduced 
in reference 4, and the response envelope introduced in the present note. The 
error angle is a distance between three-dimensional rotations. The response 
envelope is a function of time which at each instant is the maximum of all pos- 
sible values of the error angle at that instant. 
cates the responsiveness of the system in the following sense. Under no 
possible circumstances is the attitude error between spacecraft and target, at 
any instant, greater than the value of the response envelope at that instant. 

The response envelope indi- 

The discussion proceeds from the general to the particular in three steps. 

Third, 
First, the response envelope is defined precisely. Second, a procedure for 
computing a useful approximation of the response envelope is described. 
a numerical example is presented as an illustration of the method. One of the 
control laws introduced in reference 4 is assumed for an Orbiting Astronomical 
Observatory, and the following questions are considered: (1) What is the 
responsiveness of the system to step changes in the target attitude, and how 
well does the system follow time-varying target attitudes? ( 2 )  How signifi- 
cant is gyroscopic coupling? How sensitive is the system to (3) external 
torque disturbances, (4) variations in system parameters, (5) changes in the 
form of the control law, and ( 6 )  time delays in the controller? Answers are 
obtained by the proposed procedure. 

SYMBOLS 

output matrix; actual attitude 
space 

input matrix; desired attitude 
space Ads 

A a orthonormal triplet of vectors 

of spacecraft relative to inertial 

of spacecraft relative to inertial 

fixed to the spacecraft 
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C unit eigenvector of R; error axis 

d 

d 
dt 
- 

E 

gi 

hmax 

I 

Ja 

j max 

j min 

R 

d" 

,. 
S 

t 

orthonormal triplet of vectors fixed to the target 

time derivative along a system trajectory 

set of system state equations (i.e., X = f[x,ul(t),u2(t)]) 

right-hand side of system state equations 

scalar functions appearing in equation (16) 

angular momentum storage capacity of controlling device 

unit matrix 

spacecraft coordinates of moment of inertia of main body 

maximum eigenvalue of Ja 

minimum eigenvalue of Ja 

torque capacity of the controlling device 

set of all motions of the system 

perturbation function 

error matrix defined by equation ( 2 )  

set of all real n-tuples 

matrix function defined by equation (A2) in appendix A 

orthonormal triplet of vectors fixed in inertial space 

time 

trace of matrix ( ) 

set of admissible time variations of u. 

value of u. at t 

solution of Hamilton-Jacoby equation 

-1 

-1 

solution of Liapunov inequality 

explicit part of  v+(t,x> 
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W 

wa 

--a 

Wamax 

Wd 

Wdmax 

X 

X 

8 

lJ 

c a 

‘a 

‘amax 

o 

set of admissible time histories of spacecraft angular velocity 

body coordinates of inertial angular velocity of spacecraft 

spherical bound on wa 

target coordinates of inertial angular velocity of target 

spherical bound on Wd 

state space of the system 

element of state space 

control law given by equation (16) 

region of operation of the system 

real constant 

set of admissible time histories of spacecraft acceleration 

angular acceleration of the spacecraft 

spherical bound on oa 

error angle 

point on a time history of error angle 

value of the response envelope at t 

value of lower estimate (of the response envelope) at t 

value of upper estimate (of the response envelope) at t 

time history (thus, - x = 

time derivative of ( ) 

matrix transpose of ( ) 

[x(t) ,t] : t 2 01) 

DEFINITION OF THE RESPONSE ENVELOPE 

Consider in general terms a complete attitude control system. It con- 
sists of essentially three distinct parts: (1) an input generator, (2) a 
spacecraft, and ( 3 )  a disturbance generator. The input generator represents 
all admissible time variations of attitude to be followed by the spacecraft. 
The spacecraft consists o f  the spacecraft inertia, torquers, sensors, and a 
controller which sends commands to the torquers based on information supplied 
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by the sensors. The disturbance generator represents all admissible time vari- 
ations of undesirable but unavoidable disturbances acting on the spacecraft 
such as perturbations in system parameters and external torque disturbances. 
Thus, an attitude control system as defined in the present report is a com- 
plete spacecraft and its environment. The mathematical model to be assumed 
for such a system consists of the following items: (1) an n-dimensional 
state space X; (2) a region of operation 0 in X to which the motion of 
the system is restricted by physical limitations of system components; (3 )  two 
sets U1 and U2 of forcing functions, where for i = 1, 2, LJi is a set of 
piecewise conFinuous vector functions of time u. with values ui(t) in 
Ui(t); and (4) a set 
generator, spacecraft, and output generator: 

E of state equations des&bing the dynamics of input 

E = { (Ai = fi[x,ul (t) ,u2(t)], i) : i = 1, . . . , nl 

A motion of the system is a solution of E for some initial state x in 0 ,  
some input attitude generated by a forcing function u1 in U1, and some dis- 
turbance generated by a forcing function u2 in U,. Thus, the sets E and 
0 x ul x U2 (Cartesian product) define theset 
the system. The central topic of this report isthe description of M. Those 
aspects of M 
lows any admissible time variation of the desired attitude in the presence 
of any possible disturbance. 

- - 

M -of all possible motions of 

will be considered which reflect how well the spacecraft f o l -  

To decide at any instant of time how near the actual attitude of the 
spacecraft is to the desired attitude, it is necessary to have a notion of a 
distance between three-dimensional rotations. This may be introduced as fol- 
lows, Consider three right-handed orthonormal triplets of vectors, say, s, a, 
and d. The attitude of 2 relative to is given by the 3 x 3 orthogonal 
matrix' A,, whose elements are the direction A cosines of relative to g .  
Similarly, the attityde of d relative to s is given by Ads. The attitude 
of a relative to d is given by the matrix AasAss, where t denotes 
matrix transpose. It follows (see ref. 5) from Euler's theorem on rotations 
that AasA:s 
the eigenvector of AasA:S. 
graph 3 in appendix A) is the following function of A,, and Ads: 

A A  

may be interpreted as a rotation about a single axis which is 
The angle of this rotation (according to para- 

It is shown in appendix A that this function is a metric on the space of three- 
dimensional rotations. Indeed, (i) @(Ads,Aas) 2 0; (ii) $(Ads,Aas) = 0 if 
and only if Aas = Ads; (iii) @(Ads,Aas) = @(Aas,Ads); (iv) if B is any 
three-dimensional rotation, then $(Ads,B) + @(B,Aas) $(Ads,A,,). Conse- 
quently, @(Ads,A,,) may be interpreted as representing the distance between 
and 2. 
of this report. In inertial space s is fixed. In the spacecraft 2 is 
fixed; Aas 
attitude control system; Ads 

2 
In fact, the following interpretations will be made in the remainder 

is the actual attitude of the spacecraft, and is the output of the 
defines the desired attitude, and is the input 
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to the system. The attitude error is the 3 x 3 orthogonal matrix R defined 
by 

t 
R = AasAds (2) 

* * 
It may be noted that R locates a relative to d. The magnitude of atti- 
tude error is.the error angle @ = @(Ads,Aas). 
error is the axis c (unit eigenvector) of R computed from R using 
equation (AS) in appendix A. 

The direction of attitude 

It can be shown (see appendix A) that @ has the following intuitively 
appealing properties. (1) It is the shortest unrestricted angular distance 
between the actual and the desired attitude. ( 2 )  It is no smaller than the 
angle between the 
vector of the a-triplet. ( 3 )  In the one-dimensional case (i.e. , shaft- 
positioning servos) in which rotation about only a single axis is allowed, the 
usual definition of error is +e = @d - @a, where +d and @a are the input 
and output angles, res ectively. In that case + = [+el if 1+e[ 5 IT, and 
@ = 271 - (4) When @ is small, the attitude error 
may be represented by the vector +c whose components are the Euler angles of 
R, and whose magnitude + is the square root of the sum of the squares of 
these angles. For these reasons it appears that the error angle + is both a 
mathematically convenient and intuitively appealing scalar representation of 
three-dimensional attitude error of a spacecraft at each instant of time. 

ith (i = 1, 2 ,  3 )  vector of the ;-triplet and the ith 

if IT 5 7 @ e l  5 271. 

The response envelope can now be defined in terms of time variation of 
error angle. With each admissible motion of the system it is possible to asso- 
ciate a time history + of the error angle. For a given admissible initial 
state, and forcing funFtions u1 and u2, + is a curve in the first quadrant 
of the t-+ plane. The @-coordinate of- + will be denoted by @(t,x,ulJu2). 
Let CJ be the set of all such curves generated by M. The response envelope, 
to bedenoted by +**, is defined to be the curve inthe first quadrant of the 
t-@ plane such that every point +**(t) of +** is the maximum of all values 
of + in CJ at time t. For this definition to make sense formally, it will 
be assumed That for all t 2 0, the set e x U,(t) x U2(t) is compact and that 
f[x,ul(t),u2(t)] is uniformly bounded on this set. This assumption is suffi- 
cient to guarantee the existence of the response envelope, and represents an 
insignificant physical restriction. 
computed for any 

The value of the response envelope may be 
t L 0 by the following formula. 

The following diagram summarizes the discussion of the present section. 
The input and disturbance generators generate admissible time variations of 
desired attitude Ads and disturbance - d, respectively. Both act on the 
spacecraft to generate the rotation 
ing relations hold: the state space XC X1 x X2 x X 3 ,  the region of 
operation 

- Ass. For the complete system the follow- 

8 C 8 1  x 82 x 83, and the state equations E C - El U E2 UE3. By 
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INPUT 
GENERATOR 

___ 
SPACE- 
CRAFT 

O,STURBANCE means of equation (1) , the distance between 
the desired and actual attitudes is computed 
to obtain the curve @. The boundary of all 
such curves is the reyponse envelope 
Thus, the response envelope is a globai prop- 
erty of an attitude control system that 
describes the responsiveness of the space- 
craft. Regardless of where in its region of 

less of how the input attitude and distur- 
bance vary in time within the prescribed 

time be greater than the value of the 
response envelope at that time. 

@**.  

operation the system is initially and regard- 

Figure 1.- At t i tude  c o n t r o l  system and i t s  
* limits, the attitude error will not at any response envelope. 

* 

APPROXIMATE COMPUTATION OF RESPONSE ENVELOPE 

Consider, now, the problems involved in the computation of the response 
envelope whose points are defined by equation ( 3 ) .  The usual functional maxi- 
mization techniques yield in general only local maxima. In the absence of the 
a priori knowledge of the number of these maxima, such methods will yield only 
lower estimates $I of the response envelope $I**, where $I-(t) I $I**(t) for 
all t 2 0. 
unacceptable on the basis of such an estimate: there are conditions for which 
attitude error is at least as large as 
method is presented for computing an upper estimate 
+**(t) $I+(t) for all t 2 0. This is useful because an attitude control sys- 
tem may be judged acceptable on the basis of such an estimate: under no cir- 
cumstances can the attitude error be larger at time t than $I'(t). The 
discussion .proceeds in three steps. First, a general approximation procedure 
is set up using a state space interpretation of equation ( 3 ) .  Next, a proto- 
type of arbitrary attitude control systems is formulated. Finally, the compu- 
tation of an upper estimate of the prototype response envelope is stated 
explicitly. 

.- 

Thisis useful because an attitude-control system may be judged 

@-(t). In the+present section a 
0 such that 

State Space Interpretation of the Response Envelope and a 
General Procedure for Computing Its Upper Estimate 

Let the multidimensional state space X and region of operation 0 be . represented schematically as shown in the following figure, and let one of the 
state coordinates be the error angle @ (transforming the state space if nec- 
essary). The motion of the system starting in a state x and forced by ~1 
and g2 may be represented by a trajectory in 0 ,  whose @-coordinate at each 
instant is the value @(t,x,ul,u2) of the error angle at that instant. The 
same initial state but a difTerent pair of forcing functions results in a dif- 
ferent trajectory. Consider the bundle of such trajectories all emanating 
from the same initial state and generated by all admissible This 
bundle defines a moving set of states which is reachable from the given state 
at a given time. 

51 and 9. 

The crosshatched regions in figure 2 show schematically such 
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a se t  a t  va r ious  times. The maximum pro jec-  
t i o n  $* ( t , x )  of  t h i s  s e t  on t h e  $-ax is  
g ives  a t  each t t h e  va lue  of t h e  bracketed 
term i n  equat ion (3). For example, i n  f i g -  
u r e  2 ,  $* ( t2 ,x )  i s  t h e  maximum p r o j e c t i o n  of  
t h e  moving s e t  a t  t = t 2 .  D i f f e ren t  i n i -  
t i a l  condi t ions  genera te  d i f f e r e n t  moving 
sets.  Consider a t  each i n s t a n t  t h e  union of 
a l l  such moving s e t s  generated by a l l  i n i -  
t i a l  s t a t e s  i n  8 .  This  union de f ines  a mov- 

But, t h e  time r a t e  of change of V(t ,x)  along any t r a j e c t o r y  i s  
i = f [ x , u l ( t ) , u 2 ( t ) ] .  
fol lows 

Vt + V,?, and 
Hence, t h e  preceding equat ion may be expressed as 

Vt + H(t,x,Vx) = 0 (5 1 

where 

8 



It may be noted that equation (5) is formally a Hamilton-Jacobi equation. The 
boundary of the cloud is the solution of equation (5) such that 
{x: V(O,X) L 01 = e .  

If a closed form solution of the Hamilton-Jacobi equation were generally 
available, the problem of computing the response envelope would be solved, 
because 

@**(t) = max @ 
{x:  V(t,x) = 01 

(7) 

Unfortunately, no general solution to Hamilton-Jacobi equation is currently 
available. The best that can be done is to compute points on V(t,x) = 0 by 
means of the canonical equations associated with equation (5) .  
noted this results in a lower estimate 0- of the response envelope. Another 
approach is , of course, to try to guess ?he form of solution of equation (5) 
on the basis of insight in much the same way as one guesses Liapunov functions. 
Since a guess will most likely not be a solution, it is necessary to decide 
what is a meaningful approximation in the present context. From the practical 
point of view, the next best thing to the exact response envelope is a pair 
($-,@+) of lower and upper estimates such that for each 
$:(tT 5 $** (t) I_ $'(t). Since @ -  may be computed by means of the canonical 
equations, it seems reasonable to consider an approximate solution meaningful 
if, when substituted in equation ( 7 ) ,  it yields an upper estimate $+. A func- 
tion V'(t,x) will be such an approximate solution if the surface v+(t,x) = 0 
encloses the cloud for all t 2 0, that is, if 

As already 

t 2 0, 

+ 
{x: V(t,x) I_ 0) - C {x: v (t,x) I_ 0 )  

for all t 2 0. However, the approximating surface need not be a part of the 
cloud. Hence, V'(t,x) is a solution of the following Liapunov inequality 

with the boundary condition 

Inequality equation (sa) must hold for all t L 0 and all x in 8 such that 
V'(t,x> = 0. 

It is very easy to construct functions that solve equation (8). Simply 
let V'(t,x) = Vl(t,x) - V,(t), where V,(t,x) is such that for some a < a, 



and where V2(t) is the solution of the following ordinary, first order, 
scalar differential equation with initial condition V2(0) = a. 

v2 = max [Vlt + H(tYXYV1X)l (10) 
(X E e: vl(t,x) = v2(t)) 

Then 
stitution. 
following natural modification of equation (7) .  

V+(t,x) so defined solves equations (8) as can be tested by direct sub- 
The corresponding upper estimate may be computed by means of the 

4)+w = max 4) 
{x E e: v,(t,x) = v2(t)) 

%' Thus, any function Vl(t,x) that can satisfy the boundary condition (9) may 
always be used to compute an upper estimate. Of course, the fidelity with 
which 4)' represents $** depends directly on the choice of Vl(t,x). A 
poor choice will result-in an overly pessimistic estimate of system 
performance. 

A Prototype of Arbitrary Attitude Control Systems 

In order to construct a Vl(t,x) for an arbitrary three-axis, large-angle 
attitude control system,A, consider the model of such a system in somewhat 
greater detail than shown in figure 1. Associate with every possible motion 
of the system the following time histories: target attitude Ads, spacecraft 
attitude bs, target angular velocity Q, spacecraft angularvelocity xay 
and spacecraft angular acceleration aa. In any practical situation, wd(t), 
wa(t), and a,(t) will be uniformly bounded. - Co(m) is defined as 
the set of piecewise continuous vector functions of time, which are spheri- 
cally bounded by a constant my there is a triplet (Wdmax, Wamax, oamax) of 
constants such that 
- aa E L a c  co(Uamax). This-means that any admissible time history Ads of the 
desired attitude (target) is a solution of the following kinematic equation 
(see eq. (Al)). 

That is, if 

9 E Co (Wdmax) , 5 E go(wamax) , and 

for some orthogonal Ads (0) and some wd E co(Wdmax). Similarly, any possible 
time history bs of spacecraft attitcde is a solution of I- 

for some orthogonal Aas(0) and some E 3. According to equation (A8), 
equation (2), and the above kinematic equations imply the following expression 
of the time rate of change of system attitude error R. 

10 



This kinematic equation of attitude error will be taken as part of the set 
of system state equations. Since R is always orthogonal, it could be repre- 
sented using three independent coordinates. This, however, is unnecessary and 
inconvenient at this stage. Instead, all nine elements of R will be con- 
sidered as independent with the stipulation that every R(0) is orthogonal. 
The term -Rwd(t) in equation (14) will be interpreted as the value at time t 
of the forcing function - u1 in figure 1. Consequently, - U1 = go(wdmax). 

E 

Because angular acceleration of the spacecraft is bounded, Wa has more 
t structure than - Co(wamax). In fact, any Ea is a solution of tEe dynamic 

equation 

for some wa(0) 5wamax and some 5 in the set & of admissible angular 
accelerations. Consider any such s. It is obviously possible to write 

= ao + 6 0 ,  where oo is a specific function and 6a = 5 - a'. The inter- 
pretation to be assigned to is that it representsthat part of the space- 
craft acceleration which helps to reduce attitude error. The difference 60 
will be interpreted as a disturbance. According to the previous discussion- 
the magnitude of attitude error R may be represented by the error angle $, 
and its direction may be represented by the unit eigenvector c of R. Hence, 
any part of angular acceleration % that is antiparallel to c may be con- 
sidered helpful. Another helpful part of 5 is one which is antiparallel to 
the angular velocity wa of the spacecraft because it provides damping. For 
these reasons uo will be defined as follows. For every possible motion of 
the system 

% 
uo 

zo 1 { (t,z[R(t), wa(t)]): t 2 01, where 

and where gl, g2, and g3 are scalar functions. The perturbation 6o(t) will 
be represented at every t 1. 0 by n[t,R(t),wa(t)]u2(t), where 3 E co(l), 
and where the function n is chosen so that for every possible motion of the 
system and every t 1. 0 1 

s sa(t) = aa(t) - z[R(t),wa(t)] E {n[t,R(t),wa(t)]u2(t): Ilu2(t)ll 1) 

The perturbation function n may be a matrix, or simply a scalar. With such 
a representation of spacecraft acceleration - aa, the dynamic equation (15) 
becomes the following: 



This equation will be taken as the remaining part of the set 
state equations, and Wa will be the remaining part of the state vector x. 
The coordinates of wa are restricted by the condition ~~w~ll 5 Wamax. The 
forcing function u2 
disturbance generator as shown in figure 1. 

E of system 

will be identified with the forcing function in the 
Hence - U2 = - CO(1). 

The preceding discussion motivates the prototype of attitude control 
systems defined in the following table. 

TABLE I. - PROTOTYPE OF ARBITRARY ATTITUDE CONTROL SYSTEMS 

X = R I 2 ,  x = (R,wa) 

The underlying state space X is 12-dimensional; the state variable is 
denoted mnemonically by x = (R,Wa). The region of operation 0 is defined 
by the orthogonality condition on the error matrix 
bound on the angular velocity wa of the spacecraft. Thus, 0 is 
6-dimensional: three for R and three for Wa. Clearly, 8 is compact. The 
set E of state equations consists of equations (14) and (18). The control 
law z(x) is defined by equation (16). It and the perturbation function 
n(t,x) are bounded on 8. The two forcing functions u1 and u2 belong to the 
sets of piecewise continuous vector functions of time which are spherically 
bounded by 
equations is uniformly bounded on its compact domain. 

R and by the spherical 

Wdmax and 1, respectively. The right-hand side of the state 

In the following very specific sense40 is a prototype: it generates 
all time histories 4 of the error angle which are possible for any attitude 
control system having the bounds (Wdmax, Wamax, aamax) and the set & of 
admissible accelerations f o r  which inequality (17) holds. This inequality can 
be satisfied for any 4, however complex, by a proper choice of n(t,x). Con- 
sequently, the response envelope ofJi/lOIWdmax, wamax, z(x>, n(t,x>] is neces- 
sarily an upper estimate of the response envelope of 
A =  (Wdmax, Wamax, Damax, &) for which (17) holds. 
estimate will be pessimistic. 

1 

*r 

If n(t,x) is large, the 
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Explicit Procedure for Computing an Upper Estimate 
for the Prototype 

A very simple Vl(t,x) is now proposed for the computation of an upper 
estimate of the response envelope of by means of equations (9), (lo), and 
(11). It is the following. 

(19) 
J 

The functions gl, g2, and g3 appear in equation (16). The scalar 1-1 is an 
adjustable constant. 

of equation (19) may be thought of as a natural extension to three dimensions 
of the Liapunov function useful for the analysis of one-dimensional servos. 
Thus, the first integral on the right of equation (19) depends only on the mag- 
nitude of attitude error. 
of angular velocity. 
these magnitudes as well as on the angle between the error axis and the 
velocity vector. 

There is no explicit dependence on time. Hence, Vlt 3 0. 
f The Hamiltonian H(t,x,VlX) is given by equation (BZ). A V,(t,x) of the form 

The second integral depends only on the magnitude 
The last term represents a coupling which depends upon 

The proposed procedure for computing an upper estimate of the response 
envelope of the prototype4’ 
following table. 

is now explicit. It is summarized in the 

TABLE 11.- COMPUTATION OF AN UPPER ESTIMATE 

Step 1. Obtain V1 using (19) 
Step 2 .  Choose V2(0) to satisfy (9) 
Step 3 .  Solve (10) for V2(t) 
Step 4. Compute - ++ using (11) 

The Hamiltonian H(t,x,Vlx) needed in step 3 is derived in appendix B. 

Several points regarding this procedure are worth noting. Since V1 
4 defined by equation (19) depends only on the triplet [$, IlwaII, sin(l/Z $)ctwa] 

of scalars, the maximization in step 4 may be performed on a two-dimensional 
surface in a three-dimensional space whose points are related to the states x 
in 8 by the function p(x) = [$, llWaII, sin(P/2 $)ctwa]. 

The computation in step 3, in general, requires a maximization over a 
five-dimensional surface in e. If, however, the perturbation function n(t,x) 
depends on x only through the triplet p(x), as above, then this 
maximization can be performed on the same two-dimensional surface as in step 4. 

13 



Steps 3 and 4 can be performed simultaneously on a digital computer. 
Experience has shown that the computation of an upper estimate in this manner 
takes about one second of computer time. 

Finally, it will be noted that the perturbation enters the computation 
only by way of equation (Bl) needed in step 3 .  Consequently, when z(x) and 
n(t,x) are selected for any attitude control system 4, only that component of 
acceleration need be considered in equation (17) which is in the plane of 
wa and c. 

5 

EXAMP LE 

The following numerical example illustrates the computation and use of 
An upper estimates for the global description of attitude control systems. 

Orbiting Astrpnomical Observatory (OAO) is considered. Its parameters perti- 
nent to the discussion are summarized in appendix D. The spacecraft is con- 
trolled by means of three identical orthogonally placed motor-reaction-wheel 
combinations. The torque capacity of each motor is Rmax, and the angular 
momentum storage capacity of each wheel is 
tia (moment of inertia of the spacecraft with locked wheels minus the moment 
of inertia of each wheel about its spin axis) is the matrix Ja. The maximum 
eigenvalue of Ja is jmax. A momentum dumping scheme maintains the total 
angular momentum of the system bounded by 
by Damax = Rmax/jmax7 and the velocity is bounded by 
wamax = (hmax - hsmax)/jmax. 
basis of sensor data is Jaz(X), where the control law z(x) is assumed to be: 

hmax. The passive moment of iner- 

hsmax. The acceleration is bounded 

The torque commanded by the controller on the 

The function sat(+,+,) = +/+s for error angle + 5 +s, and it saturates at 
the value 1 for + 2 + s .  The saturation angle +s is a dimensionless combina- 
tion of the dynamic capacities of the spacecraft: 

2 
2hmax 

j maxtmax 
4s = 

For the present example of the OAO, +s = 0.1 radian. 
the system is derived in appendix C .  
12-dimensional. Three independent coordinates are needed for the spacecraft 
attitude, three for the desired attitude, three for the spacecraft angular 
velocity, and three for the total angular momentum of the system (spacecraft 
and wheels). 

The complete model of 
The system has three axes and is 

The stability of this system has been investigated in reference 4. There 
the system was shown to be asymptotically stable everywhere on its region of 
operation. The plots in figures 2, 3 ,  and 4 of reference 4 show a response of 
the system to a particular initial condition. The questions being considered 
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now are: (1) What is the responsiveness of the system to step changes in the 
desired attitude, and how well does the system follow a desired time varying 
attitude? (2) How significant is the gyroscopic coupling? How sensitive is 
the system to (3) external torque disturbances, (4) variations in system param- 
eters, (5) changes in the form of the control law, and (6) time delays in the 
controller? 
on a digital computer using the procedure outliEed in table I1 for various 
appropriate instances of the perturbation function 

These questions are resolved by means of upper estimates computed 

n(t,x). 

Let the system be normalized as follows: time, t + t/wamax, angular 
velocity w + w*wamax. Then, the control law (20) becomes the following. 

1 

z(x) = - 
r 

1 
Wa - 

@ S  

This control law is a special case of (16): setting gl = sat($,+,), 
g2 = l/+s, and g3 = l/$s 
With these identifications and setting the adjustable parameter 1-1 = 1, the 
V1 function defined by equation (19) assumes the following completely explicit 
form . 

in equation (16) one obtains equation (21), above. 

2 4 1  + t  Vl(t,x) = sat(y,+s)dy+- [l - cos z) + z + s  ()wa(12 + sin - 2 c wa 
0 $S 

The results of the computation are summarized below in the same order as the 
questions posed above. 

(1) Responsiveness of the nominal system. The assumptions for this case 
are: 
velocity of the spacecraft is arbitrary except that it is spherically bounded 
by wa ax; the initial step change in the desired attitude is arbitrary; the 
desire2 attitude varies in time arbitrarily except that its angular velocity 
is spherically bounded by Wdmax; there are no disturbances, i.e., n(t,x) E 0. 
The result is the family of curves in figure 4. The family parameter b is 
the ratio Wdmax/Wamax of the two velocity bounds. The curve b = 0 indi- 
cates the responsiveness of the nominal system to step changes in the desired 

the initial attitude of the spacecraft is arbitrary; the initial angular 

attitude. Thus, for any possible initial condition, and 
regardless of the size and direction of the step change of 
the desired attitude, the attitude error will not be 
greater at any time than indicated by this curve. 
the system is not only globally asymptotically stable, but 

? also it is essentially ($ L 0.01) on target no later than 
B 5 units of time. Curves with b > 0 indicate how well the 

! 

In fact, 

- 
nominal system follows the desired attitude when that is 
varying in time. Thus, the curve b = 0.2, for example, 
shows that for any possible initial condition, and regard- 

0 2 4 6 8 10 less of how the desired attitude varies in time, so long 
as its angular velocity remains spherically bounded by 

Figure 4.- N o m i n a l  system.0.2 Wamax, the attitude error will not be greater than 
that indicated by the curve. It is emphasized that a 

Jhz, b 

‘Wrnax - 
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curve in figure 4 is not a response of the system. Rather, it is a descrip- 
tion of all (there are infinitely many) responses of the multivariable, 
multidimensional, nonlinear, and nonautonomous system with infinite sets of 
initial conditions and forcing functions. 

( 2 )  Significance of the gyroscopic coupling. It is assumed that initial 
spacecraft attitude is arbitrary and its angular velocity is spherically 
bounded by Wamax. 
change. 
cally bounded by hsmax but is otherwise arbitrary. There are no net exter- 
nal torques. 
The result is the family of curves in figure 5.  The family parameter b is 

The desired attitude is stationary after an arbitrary step 
The system is preloaded with a total angular momentum which is spheri- 

The appropriate perturbation term is given by equation (C6). 

the ratio hsmax/hmax of the bound on the total angular 
momentum to the momentum capacity of the reaction wheels. 
The curve b = 0 corresponds to the case of no gyroscopic 
coupling. The curve b = 0.3 indicates that for the case 
of the OAO considered, gyroscopic coupling is not very 
significant even when the system is loaded with as much 

J 

I as 30 percent of its angular momentum storage capacity. 

t - 
n 
0 - 
6 

( 3 )  The effects of external torque disturbances. 
, The assumptions in-this case are as in case (2) except 

O * 6 8 lo that net external torque is allowed to be nonzero. The 
“%ox - only restrictions are that this torque is spherically 

effects. bounded by Rsmax, and that it does not overpower the 
momentum dumping system which maintains the total angular 
momentum bounded by hsmax. The appropriate perturbation 
term is given by equation (C7). The result is the pair 
of curves in figure 6. The lower curve is for 
hsmax = Rsmax = 0. The upper curve is for 
hsmax = 0.3 hmax and Rsmax = 0.1 Rmax. Thus, for any POS- 
sible initial condition, attitude error will be less than 
about 10” after 6 units of time despite external torques 
which may be as large as 10 percent of the torque 
capacity of the controller. 

Figure 5. - Gyroscopic 

0 2 4 6 8 1 0  
‘ W m x  - (4) Sensitivity to variations in system parameters. 

Figure 6.- External torsueuntil now the spacecraft was assumed to be controlled 
disturbances. exactly by the control law (20). That is, it was assumed 

that the motor-reaction-wheel combinations were placed exactly on the orthogo- 

and that the matrix Ja was known exactly. Obviously, in practice, error B 

v 
nal body axes, that the error angle 4 ,  the error axis c, and the angular 
velocity wa of the spacecraft were computed from sensor data without error, 

will be present because motor-reaction-wheels will be slightly off axis, sen- 
sor characteristics will vary, signal and power amplifiers will drift, the com- 
puter will have roundoff errors, and the moment of inertia of the spacecraft 
will vary because of shifting mass caused by thermal distortion and movement 
onboard of instruments and personnel. The purpose of the present subsection 
is to investigate the effects of such errors. 

Let the perturbation in the active parameters be denoted by the column 
6p of appropriate dimension, and let the set of all possible 6p be P 
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which may be assumed to be infinite. The actual torque generated by the con- 
troller is a function, say JO,z(x,Gp), of the state x and perturbation 6p. 
Then the effects of perturbation on the angukar velocity of the spacecraft may 
be described by the function m(x,bp) = Jz1Ja[z(x,0) - z(x,bp)], where Ja is 
exact moment of inertia of the system. For a fixed state x, let the set 
M(x) = [m(x,bp) such that 6p E PI and let the set N(x) = [n(t,x)u2(t) such 
that llu~(t)ll I 11 where n(t,x) is chosen so that for t 1. 0 M(x)C N(x) for 
all x in 0 ,  the region of.operation of the system. Clearly, regardless of 
how 6p varies in time, its effect on the angular acceleration may be 
accotinted for by the perturbation term n(t,x)u2 (t) , where u2 E Co (1). The 
significance of the perturbation in system parameters may now be estimated 
with an upper estimate of the response envelope. 
perturbations are given next. 

Two examples of 

(i) Spherical perturbation in angular acceleration. 
n(t,x) = bllz(x,O)II. The constant b is the intensity of 
perturbation, and z(x,O) is the nominal control law z(x) 
given by equation (20) .  The curves in figure 7 are upper 
estimates for various intensities b. The plots indicate 
that spherical errors in acceleration of the order of 
10 percent affect the performance of the system little. 

of inertia, motor and power amplifier gains, or a mis- 
alinement of the motor-reaction-wheels of about 3’ is not 
very detrimental to the performance of the system. Even 

errors in acceleration, the system remains globally asymp- 

about 8 units of time for any possible initial condition. 

I B e 
I b.O.0’ This means, for example, that 10 percent drift in moment 

b = O . l  b=0.2 4 

~~~, 

b = 0 . 3  

‘Wmox - when such errors are large enough to cause 30 percent 
Figure 7 . -  Spher ica l  
error in acceleration. totically stable, and it is essentially on target after 

(ii) Spherical error in the error axis. Suppose that 
the difference between the true error axis c and its com- 
puted approximation co is spherically bounded by b, 
that is, suppose that ~(c - coli (b. Then the correspond- 
ing n = bsat($,$s)/$s. Figure 8 shows the computed upper 
estimates f o r  several intensities b. The plots indicate 

b=O.O that the system is not very sensitive to errors in the 
b=O. I error axis. In fact, even when these errors are as large 
b z 0 . 3  as 40 percent, the system remains asymptotically stable 

everywhere on its region of operation, and it is essen- L about 8 units of time. bZ0.2 \‘ 

b = 0 . 4  

2 6 8 lotially on target for any possible initial condition after 
‘Wlnox - 

Figure 8.- Spherical  
e r r o r  i n  e r r o r  a x i s .  (5) Sensitivity to changes in form of control law. 

In the preceding subsection perturbations in angular acceleration were assumed 
unavoidable and largely undesirable. Sup- 
pose that all system parameters are essentially fixed, but that it is desir- 
able for reasons of simplicity of implementation to use a control law which is 
different from that given by equation (20). 
to the response envelope of the modified system may be computed as in the 
preceding subsection if the given control law is considered a sum of 
equation (20)  and a perturbation. The next two examples illustrate this point. 

Another point of view is possible. 

In such a case an upper estimate 
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(i) A processor of signals from attitude sensors. Let the attitude of 
the spacecraft be measured with some arbitrary combination of star trackers, 
inertial gyros, sun sensors, etc. Let the outputs of  all sensors be arranged 
in a single column matrix y of an appropriate dimension, and let the com- 
plete package of sensors be described by y = g(Aas,yo) where A,, is the 
attitude of the spacecraft and 
sensor targets (i.e.> guide stars, inertial directions, sun, etc.). Let y, 
Ads, and yo 
f(y,Ads,yo). Finally, suppose that this output is used instead of sat(@,,@,)c 
in equation (21); that is, suppose that the new control law is the following 
modification of equation (21). 

yo 

be combined in a processor whose output is some given function 

is the set of inertial coordinates of  the 

Then the perturbation in z(x) is z(x) - z*(x) = [f - sat(+,$s)c]/$s. Con- 
sequently, the upper estimates given in figure 8 describe this modified system 
for constant Ads and yo, and, of course, $ s  = 0.1. The intensity 

Thus, one may conclude, for example, that if reaching the target in 8 units of 
time is sufficiently fast for the mission of the spacecraft, any combination 
of attitude sensors and processor with 
Two possible reasons one might be interested i n  a case with b > 0 are (1) sim- 
plification of the control law, and (2) determination of effects of failure of 
part of the output of the sensor package. 

b 5 0.4 may be considered acceptable. 

(ii) Control with control moment gyros. Suppose that the spacecraft is 
to be controlled not with reaction wheels but, rather, with a set of control 
moment gyros. Let the active gimbal angles of all the gyros in the package be 
arranged in a column y of an appropriate dimension, and let the spacecraft 
coordinates of the total angular momentum of all gyros be denoted by 
Assuming that the total angular momentum of each gyro may be adequately approx- 
imated by its spin momentum, we may express h: as a function of y. Let 
h: = h(y) , where 
radius hmax. Then the control torque is -hyy. Let the gyro gimbals be 
driven through a processor so that 
processor, Ja is the moment of  inertia of the spacecraft, and z(x) is the 
control law given by equation (21). Then the new control law is given by 
z* (x,y) = JilhyF (y) JaZ (x) , and the perturbation 
z(x) - z*(x,y) = [I - JalhyF(~)Ja]z(x). Consequently, the upper estimates 
given in figure 7 describe the spacecraft controlled with a set of control 
moment gyros when $s = 0.1. The intensity is 

hi. 

h(y) is one-to-one on Y, and h(Y) is a solid sphere with 

>; = -F(y)Jaz(x); where F(y) describes the 

b = max I1 I - JalhyF(y)JaII 
Y 
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Two possible reasons one may be interested in a case with b > 0 are 
(1) simplification of  the control law, and (2) determination of effects of  
failure of a number of gyros in the package. 

(6) Sensitivity to time delays. It is assumed that the angular velocity 
of the spacecraft is not measured directly but, rather, that it is computed 
from attitude data supplied by attitude sensors, and that this computation 
yields the exact angular velocity delayed by A units of time. The resulting 
control law is the following modification of equation (21). 

1 
z*(x,A) = - - [sat(@,@,)c + wa(t - A)] 

@S 

The perturbation z(x) - z*(x,A) = [wa(t - A) - wa(t)]/@,. But, 

t+A 
wa(t - A) - wa(t) = -It z*[x(t),A]dt 

Consequently, the effects of small time delays are described by the curves in 
figure 7, where the intensity b = A/@s = 10 A. In particular, the curve 
b = 0.1 describes the OAO with a real time delay of  3 . 3 3  seconds. An estimate 
not restricted to small A may be computed using 

CONC LUS I ON 

The purpose of an attitude control system is to force the spacecraft to 
track a target attitude regardless of disturbances and initial conditions. 
Therefore, there is always the problem of describing how responsive the pro- 
posed system is to inputs, how unresponsive it is to disturbances, and how 
quickly it overcomes the initial conditions. 
concept of response envelope as a solution to this problem. 
methods for computing lower and upper estimates of the response envelope are 
presented. These methods are useful because, although the response envelope 
is theoretically simple, it is difficult to compute in practice. The lower 
estimate is computed by means of the standard theory of functional maximiza- 
tion. The upper estimate is computed by means of a Liapunov inequality and a 
prototype of attitude control systems. A proposed attitude control system may 
be judged unacceptable on the basis of a lower estimate. Conversely, it may 
be judged acceptable on the basis of an upper estimate. The numerical example 
presented in the note shows that the response envelope and its estimates are 

The present note proposes the 
In addition, 

I 
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useful for describing the responsiveness of complex systems whose behavior 
cannot be ascertained by a direct enumeration of cases. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif. 94035, June 20, 1968 
125-19-03-09-00-21 
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APPENDIX A 

SOME USEFUL PROPERTIES OF THREE-DIMENSIONAL ROTATIONS 

(1) Let A be a 3 x 3 orthogonal matrix whose determinant is +l. It can 
be interpreted as a rotation of an orthonormal triplet 
orthonormal triplet <. Then, if xs %nd Xa are the coordinates of an 
arbitrary vector X relative to the s and triplet, respectively, Xa = Axs 

relative to an 

(2) Suppose that A is a function A(T) of a real variable T. Then it 
can be shown (see ref. 4) that there is a column matrix U(T) such that 

- _  dA - S[u(.r)]A 
d-r 

where for any 3 x 1 column matrix x, the skew symmetric matrix 

x3 

If T is interpreted as time then U(T) gives the a-coordinates of the 
angular velocity of 2 relative to i .  

(3)  According to Euler's theorem on rotations, A may be interpreted as 
the result of a rotation from identity about a fixed axis. Hence, A is the 
solution of 

- -  dA - S(c)A A(0) = I dT 

at some T = @ y  and some constant c such that ctc = 1; @ will be referred 
to as the angle of A, and the eigenvector c as its axis. The solution is 

The angle @ and the axis c may be computed from the elements of A by the 
following formulas: 

@(A) = arc cos {$ [tr(A) - I]} 
[O ,v l  

(A4 1 
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1 c(A) = - cosec @ 2 

-a2 1 

I t  may be noted t h a t  @(At) = $ (A), c(At) = -c(A) , and, of  course,  A c  = c.  

(4) Let 8 i  be t h e  angle  between t h e  i t h  v e c t o r  of 2 and t h e  i t h  
irector of  2 .  Then B i  $(A). Indeed, 

cos e i  = COS $(A) + [l - COS @(A)]ci(A) 

Hence, cos 8-i 1. cos $(A). 

(5) Consider a l l  pa ths  from I t o  A .  Each s a t i s f i e s  t h e  d i f f e r e n t i a l  
equat ion 

with A(0) = I ,  A ( T ~ )  = A ,  and some func t ion  u .  Then 

so t h a t  

t h e  minimization problem i s  

+(A) may be considered t o  be t h e  minimum angular  d i s t a n c e  between t h e  
and t h e  t r i p l e t .  This  may be shown as fo l lows .  The Hamiltonian f o r  

and 

fi0 = 0 

i, = S [ U ( T ) ] P  

Thus, A and P have t h e  same t r a n s i t i o n  mat r ix  @ ( T ) .  Hence, 

H = 2 ~ i ~ ( ~ ) @ ( ~ ) k  + p o l l ~ ( ~ ) l l  

22 



where k is constant. The direction of U(T) which minimizes H is 

But this means that the direction of U(T) is fixed in the 
Therefore, U(T) is at each T the eigenvector of A(T), and the conclusion 
follows. 

;-triplet. 

(6) For  any three-dimensional rotations A and B, 

Suppose the contrary, and let 
@(C) > @(D) + +(CDt). That is, the angle of the composite rotation: from I 
to D, followed by D to C is smaller than the angle of direct rotation 
from I to C. This, according to the preceding section, is impossible. 

ABt = C and B = Dt. Then it would be true that 

(7) Consider the set of all three-dimensional rotations. For any A and 
B in this set let the following function be defined 

The function $(B,A) so defined is a metric on the space of three-dimensional 
rotations. Indeed, (i) @(B,A) is positive; (ii) @(B,A) = 0 if and only if 
A = B; (iii) $(A,B) = $(B,A); (iv) $(B,A) + $(A,C) 1. @(B,C) . The triangle 
inequality follows from the preceding section: 

(8) Let A = A(T) and B = B(T), where T is real. According to prop- 
erty (1) u and v are such that A = S(u)A and B = S(v)B. Let C = ABt. Then 

Hence 

- _  dC - S(u - Cv)C 
d-c 

(9) Let A = e@s(c), and dA/d-c = S(u)A. Then it follows (e.g., 
appendix B of ref. 4) that 
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(A9 1 - d+ = ct, 

sin(- 2 +)s(u)c + - 2 cos[ -  2 +)u 

d-c 

and 

( A 1 0 1  
1 1 1 

1 
sin(Z +)c is the vector part of the quaternion of A .  
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APPENDIX B 

THE FORM OF THE HAMILTONIAN 

The p r o j e c t i o n  of s t a t e  po in t  v e l o c i t y  on t h e  g rad ien t  V I x  i s  Vl,;. 
The Hamiltonian appearing i n  equat ion (10) i s  according t o  equat ion (6) t h e  
maximum of  Vlxx over  U 1  ( t )  x U,(t) .  For V 1  def ined  by equat ion (19),  

where t h e  d e r i v a t i v e s  are eva lua ted  along t h e  t r a j e c t o r y .  
ob ta ined  as fo l lows .  

They may be 

( i )  According t o  equat ion  (A9) and t h e  kinematic  equat ion i n  t a b l e  I ,  

t ( i i )  Since 1 1 ~ ~ 1 1 2  = wawa, 

d t '  
d t  a a  - llwal12 = 2 w  w 

( i i i )  From equat ion (AlO), it fol lows t h a t  

+ s i n ( 2  1 ~ j c  t -  wa 

But ha = o a ( t )  . Hence, 
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If 
equation (16), 

o,(t) = z[R(t),wa(t)] + n[t,R(t),wa(t)]u2(t), and z(R,Wa) is given by 

H(t,X,VlX) = max VlXX 
Co(wdmax) co(l> 

where VlXk is given by (Bl), above. 

For the particular control law (21) used in the example, 

1 t 1 1 1 1 1 1 
+ ul(t> [sat(+,$,)c + - sin(- 2 +IC + - 2 cos(-- 2 +)w a 2  + - sin(- 2 +)S(c)wa 

+S 
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APPENDIX C 

DETAILED MODEL OF SYSTEM USED I N  THE EXAMPLE 

The dynamic equat ion  of  a spacec ra f t  c o n t r o l l e d  by means of an a r b i t r a r y  
angular  momentum exchange and s to rage  device  ( i . e . ,  r e a c t i o n  wheels, c o n t r o l  
moment gyros) may be obta ined  as fo l lows .  The t o t a l  angular  momentum of t h e  
system i s  t h e  sum of  t h e  angular  momentum s t o r e d  i n  t h e  main body and t h a t  
s t o r e d  i n  t h e  c o n t r o l l i n g  device .  Denote t h e  i n e r t i a l  coord ina tes  o f  t h e  
t o t a l  angular  momentum by 
s t o r e d  i n  t h e  device  by 
i n e r t i a  of t h e  main body by Ja. Then, 

hs, t h e  spacec ra f t  coord ina tes  of t h e  po r t ion  
h:, and t h e  spacec ra f t  coord ina tes  of t h e  moment of 

Aashs = J a w a  + ha C 

Taking t h e  time d e r i v a t i v e ,  us ing  equat ion (13),  and rear ranging  terms,  one 
ob ta ins  t h e  fol lowing equat ion .  

Thus, t h e  angular  a c c e l e r a t i o n  of t h e  spacec ra f t  i s  t h e  sum of fou r  terms.  
The f irst  w i l l  be i n t e r p r e t e d  as t h e  con t ro l  a c c e l e r a t i o n ,  and t h e  con t ro l  
torque k z  w i l l  be  def ined  as fo l lows .  

( C 3 )  
C ‘ C  Ra = -ha 

The second term w i l l  be  i n t e r p r e t e d  as gyroscopic coupl ing.  
caused by ex te rna l  t o rque .  The body coord ina tes  of t h e  ex te rna l  to rque  wi l l  
be denoted by E;; hence, 

The t h i r d  i s  

k z  = A a s i s  

The f o u r t h  term i s  p resen t  only when t h e  moment of i n e r t i a  of t h e  main body 
v a r i e s  i n  t i m e .  

Any p r a c t i c a l  angular  momentum exchange and s to rage  device i s  l imi t ed  i n  
both exchange r a t e  and s t o r a g e  capac i ty .  
r e a c t i o n  wheels i s  l i m i t e d  as is  t h e  speed of  t h e  wheels. S imi l a r ly ,  t h e  
rates with which gyro gimbals can be dr iven  are l imi t ed  by a v a i l a b l e  torque  
capac i ty ,  and t h e  geometry de f in ing  t h e  arrangement of gyros i n  t h e  package 
imposes a l i m i t  on angular  momentum s to rage .  This  f a c t  w i l l  be accounted f o r  

Thus, t h e  torque  of  motors d r i v i n g  

by t h e  fol lowing l i m i t s :  I I L , ~ ~  C Rmax and ~jhgll 5 hmax. In  add i t ion ,  it w i l l  
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be assumed t h a t  angular  momentum i s  dumped i n  such a way t h a t  
II hsII hsmax. Equation (Cl) impl ies  t h a t  II hzll hmax i f  
I I W , ~ ~  wamax = (hmax - hsmax)/jmax, where jmax i s  t h e  maximum eigenvalue of  
Ja - 

11 5 Rema, 

Equations (2) ,  (12),  (14),  (C2), (C3), and (C4) may now be combined as 
fol lows : 

TABLE 111.- DETAILED MODEL OF THE SYSTEM 

and Lc x Le x J is  such t h a t  any x ( t )  E 0 f o r  a l l  t L 0 .  - - - 

The underlying s t a t e  space of t h i s  model i s  24-dimensional. However, t h e  
reg ion  of opera t ion  0 i s  12-dimensional.  Three dimensions a r e  f o r  t a r g e t  
a t t i t u d e  Ads, t h r e e  f o r  a t t i t u d e  e r r o r  
spacec ra f t  hs .  
The motion of t h e  system i s  given exac t ly  by t h i s  model f o r  any admiss ib le  i n i -  
t i a l  condi t ion  and t ime v a r i a t i o n s  of  t a r g e t  v e l o c i t y ,  con t ro l  to rque ,  e x t e r -  
n a l  to rque ,  and moment of  i n e r t i a .  
ex t e rna l  to rque ,  t h e  t o t a l  angular  momentum i s  a cons tan t  of t h e  motion, and 
t h e  l as t  s ta te  equat ion may be dropped. I f ,  i n  a d d i t i o n ,  t h e  t o t a l  angular  
momentum i s  zero,  then  t h e  gyroscopic term i s  absen t .  

R ,  t h r e e  f o r  angular  v e l o c i t y  of t h e  
wa,  and t h r e e  a r e  f o r  t h e  t o t a l  angular  momentum of t h e  system 

I t  may be noted t h a t  i n  t h e  absence of 

In t h e  example given i n  t h e  main t e x t ,  Ji,' (t)!L:(t) i s  assumed t o  be of 
t h e  form z(R,w,) given by equat ion (16).  Hence, t h e  pe r tu rba t ion  appearing 
on t h e  r ight-hand s i d e  of t h e  i n e q u a l i t y  (17) i s  t h e  fol lowing.  

6o ( t )  = J , l ( t )  S(wa)RAdshs + k z ( t )  + j , ( t ) w a ]  [ 
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Consider j u s t  t h e  gyroscopic  term. I t  i s ,  c l e a r l y ,  bounded by 
(hsmax/jmax)llwa~~. 
i n  f i g u r e  4. The p e r t u r b a t i o n  h ( t )  = n ( t , x ) u 2 ( t )  e n t e r s  i n  t h e  computation 
of an upper e s t ima te  only by way of equat ion (Bl ) .  Therefore  only t h e  compo- 
nent  of  6 o ( t ) ,  which is  i n  t h e  p lane  of wa and c y  i s  s i g n i f i c a n t .  For t h i s  
reason i f  t h e  scalar n is  rep laced  by t h e  matrix N ,  def ined  as fol lows,  a 
f i n e r  e s t ima te  w i l l  be  obta ined .  

This  bound could be used as t h e  pe r tu rba t ion  func t ion  n 

where a = (jmax/jmin] - 1. This  may be j u s t i f i e d  as fo l lows .  For any 
(Ads,R,wa,hs) i n  0 ,  

But t h a t  s e t  i s  included i n  

This  s e t ,  i n  t u r n ,  i s  included i n  

Iy :  y = N(wa)X and IIAII 2 1) 

Thus, t h e  p e r t u r b a t i o n  N(wa)u2(t) genera tes  a l l  p o s s i b l e  cases of  t h e  
gyroscopic  term. 

The e f f e c t s  of e x t e r n a l  to rque  as well as t h e  gyroscopic  coupl ing can be 
represented  by t h e  fol lowing p e r t u r b a t i o n .  

gemax 
jmin 

6D(t) = N ( w , ) u ~ ( ~ )  + ~ u3 ( t )  

where both u2 - and u3 - belong t o  C o ( l ) .  
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APPENDIX D 

PARAMETERS OF THE SYSTEM USED IN THE EXAMPLE 

maximum principal moment of inertia 

minimum principal moment of inertia 

angular momentum storage capacity 

maximum torque capacity 

jmax = 1 . 4 ~ 1 0 ~  kg-m2 

jmin = 1 . 0 ~ 1 0 ~  kg-m2 

hmax = 4.2 N-m-sec 

Rmax = 0.25 N-m 

2 

= 0 . 1  'hmax 
j maxgmax 

4s = 

a 

Ip = 
max 

= 0 .4  - jmax - jmin 
jmin 

- 

hmax - = 3 milliradians/sec 
j max 
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